Monthly Archives: July 2014

New Level Shifting Buffer, Level Shifter

I just finished the design and development of a new Level Shifter, LS2.  Although similar in function to the LS1 the new level shifter complements the functions of the LS1.

The  new Level Shifter is a true buffer, squaring up the input signal and driving the output signal high and low with active drivers.  The LS1 is a bi-directional circuit and drives low but has resistors for pull-up.  It is aimed at I2C circuits and low speed signals.

The LS2 outputs are low when the inputs are not driven.  Each one of the 12 inputs has a 500k pull down resistor to ground to ensure that the input will stay low while the micro driving it is in reset.  It works well with an Arduino to convert 5V or 3.3V signals to 12V.

LS2

LS12 showing inputs and outputs on the two sides.

The LS2 has two power supply pins, pin 1 and pin 28 and the buffers can translate from low to high levels or high to low levels.  The input and output power supplies determine whether the level shifting is from high to low or vice versa.  The input and output power supplies can be anywhere from 3.3 to 18V and the order in which the supplies are turned on is not important.

The LS2 has 12 channels with the inputs on the left and outputs on the right.

 

LS2 in a panel before being seperated

LS2 in a panel before being separated

The scope shot below show the measured waveform when converting a 5V signal to 12V’.

 

100kHz 50% duty cycle 5V square wave input.  Yellow is the input, Blue is the output signal

1MHz 50% duty cycle 5V square wave input.
Yellow is the input, Blue is the output signal

Rising Edge

Rising Edge – 50ns per division

 

Falling Edge at 50ns per division

Falling Edge at 50ns per division

 

The LS2 level shifter is quite fast and can easily translate a 1MHz signal.

Production quantities are available now and the price is $4.95 for a 12-channel module.